Asymptotic Analysis

- Runtime Analysis and Big Oh $O(\cdot)$
- Complexity Classes and Curse of Exponential Time
- $\Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ Relational properties

Imdad ullah Khan

Comparing Algorithms

Given two algorithms for the same problem which one is "better"? Which one has smaller runtime?

We can compare integers 37 < 49? We can compare real numbers 37.05 < 22.49? -37.5 < -22.4? We can compare signed real numbers Can we compare arrays? 9 35 36 22 8 24 < $n^2 + 2n < 3n^2$ Can we compare functions?

Function: List Representation

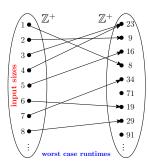
Let X and Y be two sets. A function f maps **each** element of X to **exactly one** element of Y

- $f: X \mapsto Y$
 - X is the domain of f
 - Y is the codomain of f

$$f(x) = y$$

- y is the image of x
- x is the pre-image of y

Worstcase runtime of algorithms characterized as functions of input sizes



1	2	3	4	5	6	7	8	
8	9	23	23	16	19	34	29	

- We use asymptotic analysis of functions to analyze algorithms running time
- Characterize running time for all inputs instances of a certain size (so worst-case) with just one runtime function
- Small inputs are not much of a problem, we want to learn behavior of an algorithm on large inputs

Our foremost goals in analysis of algorithms are to

Goal 1: Determine the runtime of an algorithm on inputs of large size

Goal 2: Determine how the runtime grows with increasing inputs

▷ How the runtime changes when input size is doubled/tripled?

Definition (Big Oh)

A function $g(n) \in O(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that

$$\forall n \geq n_0 \qquad g(n) \leq c \cdot f(n)$$

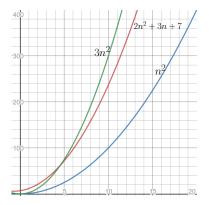
- O(f(n)) is a set of functions
 - \triangleright We abuse the notation and say g(n) = O(f(n)) for $g(n) \in O(f(n))$
- A notion of $a \le b$ for functions as for real numbers
- f(n) is an asymptotic upper bound on g(n)

Provides the right framework for both our goals

Big Oh

A function $g(n) \in O(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that

 $\forall n \geq n_0 \qquad g(n) \leq c \cdot f(n)$

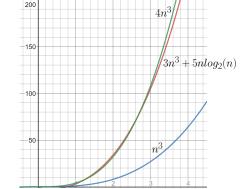


 $2n^2 + 3n + 7 = O(n^2)$ > c = 3 and $n_0 = 5$

Big Oh

A function $g(n) \in O(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that

 $\forall n \geq n_0 \qquad g(n) \leq c \cdot f(n)$



 $3n^3 + 5n \log n = O(n^3)$ $\triangleright c = 4 \text{ and } n_0 = 3$

Big Oh: Common Rules

The following two rules help simplify finding asymptotic upper bounds

- Lower order terms are ignored
 - n^a dominates n^b if a > b
- Multiplicative constants are omitted

• e.g.
$$7n^4 + 3n^3 + 10 = O(n^4)$$

• e.g.
$$3n^3 + 5n \log n = O(n^3)$$

Big Oh: Common Rules

A function $g(n) \in O(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that

 $\forall n \geq n_0 \qquad g(n) \leq c \cdot f(n)$

$$f(n) = pn^{2} + qn + r$$

$$\leq |p|n^{2} + |q|n^{2} + |r|n^{2}$$

$$= (|p| + |q| + |r|)n^{2}$$

This is true for all $n \ge 1$, hence with c = (|p| + |q| + |r|) we get that $f(n) = O(n^2)$

Big Oh: Justification to ignore lower order terms

Let the runtime of algorithm \mathcal{A} be $T(n) := n^2 + 10n$

 $T(n)=O(n^2)$

Consider an input size of 10⁹, then

$$n^2 + 100n = 10^{18} + 10^{11}$$
 and $n^2 = 10^{18}$

fractional error
$$= \frac{10^{11}}{10^{18}} = 10^{-7}$$

Goal 1: Determine the runtime of an algorithm on inputs of large size

For $n = 10^9$, $T(n) = n^2 + 10n$ is only 0.00001% more than n^2

Big Oh: Justification to ignore Coefficients

Coefficients do not really affect growth of functions

Goal 2: Determine how the runtime grows with increasing inputs

$Linear\ f(n) = 5n$	Quadratic $f(n) = 7n^2$	Cubic $f(n) = 2n^3$
n : 5n	$n : 7n^2$	$n : 2n^3$
2n : 2(5n)	$2n : 4(7n^2)$	$2n : 8(2n^3)$
3n : 3(5n)	$3n : 9(7n^2)$	$3n : 27(2n^3)$
4n : 4(5n)	$4n : 16(7n^2)$	$4n : 64(2n^3)$

Since we are concerned with scalability of algorithm, the same growth factor is observed if we consider f(n) = n, $f(n) = n^2$, and $f(n) = n^3$

Note: O(·) expresses only an upper bound on growth rate of a function▷ It does not necessarily give the exact growth rate of the function

For example, $f(n) = 3n^2 + 4n + 5 = O(n^2)$ it is also $O(n^3)$

Indeed, $f(n) \leq 12n^2$ and also $f(n) \leq 12n^3$

Let g(n) = 7n + 4 and f(n) = n

g(n) = O(f(n))

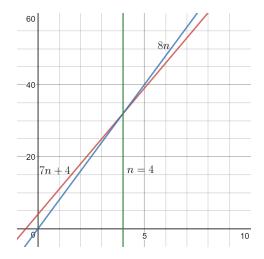
 \triangleright take c = 8 and $n_0 = 4$, $7n + 4 \le 8(n)$ whenever $n_0 \ge 4$,

1 To get *c*: We want $7n + 4 \le cn$

Solving the inequality for c, we get $c \ge \frac{7n}{n} + \frac{4}{n}$ For $n \ge 4$, $8 \ge 7 + \frac{4}{n}$

▷ Observe that $\lim_{n\to\infty} \frac{7n+4}{n} \to 7$, but this (c = 7) would require n_0 to be approaching ∞ , so we take c = 8

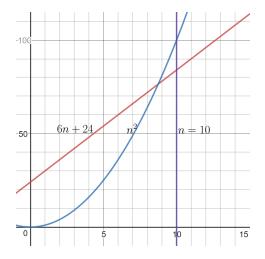
2 To get n_0 : We want $7n + 4 \le 8n$, this is true whenever $n \ge 4$



Let
$$f(n) = 6n + 24$$
 and $h(n) = n^2$,
 $f(n) = O(h(n))$

As $\lim_{n\to\infty} \frac{6n+24}{n^2} \to 0$, so any c > 0 will work. for c = 1, we want $6n+24 \le 1 \cdot n^2$ which is true whenever $n \ge 10$ So we choose c = 1 and $n_0 = 10$

More examples in lecture notes and problem set

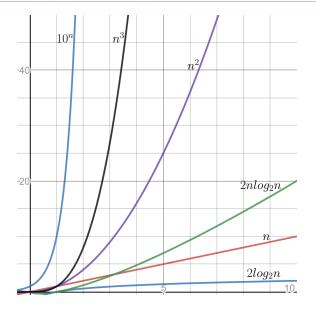


Asymptotic-Complexity Classes

Class Name	Class Symbol	Example		
Constant	<i>O</i> (1)	Comparison of two integers		
Logarithmic	O(log(n))	Binary Search, Exponentiation		
Linear	<i>O</i> (<i>n</i>)	Linear Search		
Log-Linear	On(log(n))	Merge Sort		
Quadratic	<i>O</i> (<i>n</i> ²)	Integer multiplications		
Cubic	<i>O</i> (<i>n</i> ³)	Matrix multiplication		
Polynomial	$O(n^a),\ a\in\mathbb{R}$			
Exponential	$O(a^n)$, $a\in\mathbb{R}$	Print all subsets		
Factorial	<i>O</i> (<i>n</i> !)	Print all permutations		

 $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$

Growth Rates of Functions



Big Oh: Why does it make sense?

Runtimes of algorithms of different runtime for input size n (on 1GHz PC). Assume that each operation takes 1 ns

n	$O(\log n)$	<i>O</i> (<i>n</i>)	$O(n \log n)$	$O(n^2)$	$O(2^n)$	<i>O</i> (<i>n</i> !)
10	0.003 <i>µs</i>	0.01 <i>µs</i>	0.033 <i>µs</i>	0.1µs	$1 \mu s$	3.63 <i>ms</i>
20	0.004 <i>µs</i>	0.02 <i>µs</i>	0.086µ <i>s</i>	0.4 <i>µs</i>	1 <i>ms</i>	77.1 yrs
30	0.005 <i>µs</i>	0.03µs	$0.147 \mu s$	0.9 <i>µs</i>	1sec	$8 \cdot 10^{15} yrs$
40	0.005 <i>µs</i>	0.04 <i>µs</i>	0.213µs	$1.6 \mu s$	18.3 <i>min</i>	very long
50	0.006 <i>µs</i>	0.05 <i>µs</i>	0.282 <i>µs</i>	2.5 <i>µs</i>	13 days	very long
100	0.007 <i>µs</i>	0.10µs	0.644 <i>µs</i>	10µs	$4 \cdot 10^{13} yrs$	very long
10 ³	0.010µs	$1.00 \mu s$	9.966µ <i>s</i>	1 <i>ms</i>	very long	very long
10 ⁴	0.013µs	$10 \mu s$	$130 \mu s$	100 <i>ms</i>	very long	very long
10 ⁵	0.017µs	0.10 <i>ms</i>	1.67 <i>ms</i>	10 <i>sec</i>	very long	very long
10 ⁶	0.020µs	1 <i>ms</i>	19.93 <i>ms</i>	16.7 <i>min</i>	very long	very long
107	0.023 <i>µs</i>	0.01 <i>sec</i>	0.23 <i>sec</i>	1.16 <i>days</i>	very long	very long
10 ⁸	0.027 <i>µs</i>	0.10 <i>sec</i>	2.66 <i>sec</i>	115.7 <i>days</i>	very long	very long
10 ⁹	0.030µ <i>s</i>	1sec	29.90 <i>sec</i>	31.7 yrs	very long	very long